
THIS OPINION WAS NOT WRITTEN FOR PUBLICATION

The opinion in support of the decision being entered today (1) was not written
for publication in a law journal and (2) is not binding precedent of the Board.

Paper No. 25

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS
AND INTERFERENCES

Ex parte YAYOI ABE, SHINICHIRO SUZUKI,
and YOICHIRO TAKEUCHI

Appeal No. 1997-2212
Application No. 08/233,387

HEARD: March 6, 2000

Before THOMAS, RUGGIERO, and BARRY, Administrative Patent

Judges.

BARRY, Administrative Patent Judge.

DECISION ON APPEAL

This is a decision on the appeal under 35 U.S.C. § 134

from the final rejection of claims 1-9 and 11-19. We reverse.

Appeal No. 1997-2212 Page 2
Application No. 08/233,387

BACKGROUND

During production of a microprocessing architecture,

a new microprocessor and software for the microprocessor are

sometimes developed concurrently. In developing the software,

an executable program for the microprocessor must be debugged.

When the time comes to debug the program, if the

microprocessor is not yet complete, the program cannot be

debugged on the microprocessor. Instead, a simulator is used

to debug the program.

A simulator for an existing architecture cannot be used,

as is, to debug the program. A conventional simulator must be

modified or a new simulator must be developed. Neither task

is simple. When several new architectures are developed, and

selecting one architecture to be used is necessary, moreover,

simulators corresponding to each of the new architectures must

be prepared. Furthermore, execution of simulation is time-

consuming.

The invention at issue in this appeal enables a

executable machine code developed for a new microprocessing

Appeal No. 1997-2212 Page 3
Application No. 08/233,387

architecture to be debugged on an existing microprocessor.

The machine code is first converted to high-level source code

that is architecture-independent. The source code is then

compiled and linked to produce an executable load module for

the existing microprocessor. When the load module is executed

by the existing microprocessor, it performs the same

operations that the new microprocessor will perform, thereby

debugging the micro- processor-dependent executable code on

the existing microprocessor.

Claim 1, which is representative for our purposes,

follows:

1. A converting method for converting an
architecture of a program, comprising:

a first step of compiling a first high-level
language source program for a computer of a first
architecture, thereby producing a machine program
for a computer of a second architecture;

a second step of decompiling the machine
program, thereby producing a second high-level
language source program which does not depend on any
architecture; and

a third step of compiling and linking the second
high-level language source program, thereby
producing a first executable load module.

Appeal No. 1997-2212 Page 4
Application No. 08/233,387

The reference relied on in rejecting the claims follows:

Robinson et al. 5,307,504 Apr. 26, 1994
 (Robinson) (filing Mar. 7,
1991).

Claims 1-9 and 11-19 stand rejected under 35 U.S.C. § 103

as obvious over Robinson. Rather than repeat the arguments of

the appellants or examiner in toto, we refer the reader to the

briefs and answer for the respective details thereof.

OPINION

In reaching our decision in this appeal, we considered

the subject matter on appeal and the rejection advanced by

the examiner. Furthermore, we duly considered the arguments

and evidence of the appellants and examiner. After

considering the totality of the record, we are persuaded that

the examiner erred in rejecting claims 1-9 and 11-19.

Accordingly, we reverse.

We begin by noting the following principles from In re

Rijckaert, 9 F.3d 1531, 1532, 28 USPQ2d 1955, 1956 (Fed. Cir.

1993).

In rejecting claims under 35 U.S.C. Section 103, the
examiner bears the initial burden of presenting a

Appeal No. 1997-2212 Page 5
Application No. 08/233,387

prima facie case of obviousness. In re Oetiker, 977
F.2d 1443, 1445, 24 USPQ2d 1443, 1444 (Fed. Cir.
1992). Only if that burden is met, does the burden
of coming forward with evidence or argument shift
to the applicant. Id. "A prima facie case of
obviousness is established when the teachings from
the prior art itself would appear to have suggested
the claimed subject matter to a person of ordinary
skill in the art." In re Bell, 991 F.2d 781, 782,
26 USPQ2d 1529, 1531 (Fed. Cir. 1993) (quoting In re
Rinehart, 531 F.2d 1048, 1051, 189 USPQ 143, 147
(CCPA 1976)). If the examiner fails to establish a
prima facie case, the rejection is improper and will
be overturned. In re Fine, 837 F.2d 1071, 1074, 5
USPQ2d 1596, 1598 (Fed. Cir. 1988).

With these in mind, we analyze the examiner’s rejection.

The examiner’s rejection is based on the following

premise.

As shown in Fig. 1, a program 10 is written in X
instruction set employed in producing an executable
form of the program 10. The X instruction is
compiled and linked by a computer system, for
example VAX, according to its instruction code. The
first instruction set is compiled and linked (block
16, 18). The machine code is translated to other
code through code translator (block 32) or through
direct translation path (26) as disclosed in Column
3, lines 37-46, Column 6, lines 1-16. The
translated code is recompiled and properly executed
to guarantee preservation of X instructions or
platform. These instruction are executed by
computer 20 (Fig. 1).

Robinson also disclose [sic] prior art teaching
of high level [sic] programs migration such as

Appeal No. 1997-2212 Page 6
Application No. 08/233,387

FORTRAN into machine codes, and its structure
conserve during compiling and decompiling (see Col.
3, lines 37-42). (Examiner’s Answer at 3.)

The appellants’ argue, “Robinson does not teach decompiling at

all, rather Robinson teaches only translating/assembling.”

(Reply Br. at 4.)

“[W]hen interpreting a claim, words of the claim are

generally given their ordinary and accustomed meaning, unless

it appears from the specification or the file history that

they were used differently by the inventor.” In re Paulsen,

30 F.3d 1475, 1480, 31 USPQ2d 1671, 1674 (Fed. Cir. 1994)

(citing Carroll Touch, Inc. v. Electro Mechanical Sys., Inc.,

15 F.3d 1573, 1577, 27 USPQ2d 1836, 1839 (Fed. Cir. 1993)).

Here, claims 1-9 and 11-19 each specifies in pertinent part

the following limitations: “decompiling the machine program,

thereby producing a second high-level language source program

which does not depend on any architecture” Because

neither the specification nor the file history defines the

term “decompiling” nor suggests that the appellants sought to

Appeal No. 1997-2212 Page 7
Application No. 08/233,387

assign a meaning to the term different from its ordinary and

accustomed meaning, that is the meaning we must give it.

Those skilled in the art would have understood that a

decompiler is “[a] program that takes ... machine code and

attempts to generate high-level source code from it”

Microsoft Press Computer Dictionary 114 (2d ed. 1994) (copy

attached). In view of this understanding, the limitations

recite translating executable machine code into higher-level

source code that is architecture-independent.

The examiner fails to show a teaching or suggestion of

the claimed limitations. “Obviousness may not be established

using hindsight or in view of the teachings or suggestions of

the inventor.” Para-Ordnance Mfg. v. SGS Importers Int’l, 73

F.3d 1085, 1087, 37 USPQ2d 1237, 1239 (Fed. Cir. 1995), cert.

denied, 519 U.S. 822 (1996) (citing W.L. Gore & Assocs., Inc.

v. Garlock, Inc., 721 F.2d 1540, 1551, 1553, 220 USPQ 303,

311, 312-13 (Fed. Cir. 1983), cert. denied, 469 U.S. 851

(1984)). The mere fact that prior art may be modified as

proposed by an examiner does not make the modification obvious

unless the prior art suggested the desirability thereof. In

Appeal No. 1997-2212 Page 8
Application No. 08/233,387

re Fritch, 972 F.2d 1260, 1266, 23 USPQ2d 1780, 1784 (Fed.

Cir. 1992); In re Gordon, 733 F.2d 900, 902, 221 USPQ 1125,

1127 (Fed. Cir. 1984).

Here, as background to his invention, Robinson mentions

“migrating programs written in a high level language such as

FORTRAN” Col. 3, ll. 39-41. Such migration employs

“[r]ecompiling or recoding” Id. at l. 38. The examiner

has not shown that either of these operations teaches or would

have suggested decompiling executable machine code into

higher-level source code that is architecture-independent. To

the contrary, recompiling comprises “compil[ing] a program

again, usually because of changes that needed to be made in

the source code” Microsoft Press Computer Dictionary at

333 (copy attached). Because coding comprises “generating

source code in the language(s) of the programmer’s choice,”

id. at 78, recoding is generating source code in at least one

language of the programmer’s choice again.

In describing his invention, Robinson teaches translating

higher-level source code into executable machine code that is

Appeal No. 1997-2212 Page 9
Application No. 08/233,387

architecture-dependent. “As shown in FIG. 1, an application

program 10, written in source code,” col. 5, ll. 43-44, is the

higher-level source code. “As [also] shown in FIG. 1, the

application program 10 can be migrated to the Y executable

code 22 in either an indirect path 24 or a direct path 26.”

Col. 6, ll. 1-3. The examiner has not shown that either of

these techniques teaches or would have suggested decompiling

executable machine code into higher-level source code that is

architecture-independent.

Direct migration comprises compiling and linking the

higher-level source code “with the use of a Y compiler 28 and

a Y linker 30.” Id. at ll. 4-5. The compiling and linking

produce a “resultant Y executable code ... designated by the

reference numeral 22B.” Id. at ll. 5-6. The Y executable

machine code is architecture-dependent. Specifically, the

executable machine code “employ[s] a Y instruction set to

which the hardware architecture of the Y computer system 20 is

adapted.” Col. 5, ll. 53-55. “[A]s specifically indicated

for illustrative purposes in FIG. 1, ... the Y system can

employ a reduced instruction set architecture called the RISC

Appeal No. 1997-2212 Page 10
Application No. 08/233,387

architecture within the Digital Equipment Corporation.” Id.

at ll. 61-66. The RISC architecture is “embodied in equipment

made by Digital Equipment Corporation” Id. at ll. 66-68.

Indirect migration involves compiling and linking the

higher-level source code “by means of an X compiler 16 and an

X linker 18.” Col. 6, ll. 16-17. The compiling and linking

produce “X executable code 14 which can run on the X computer

system 12.” Id. at ll. 18-19. The X executable machine code

is architecture-dependent. Specifically, the X executable

machine code “can be a RISC instruction set. For example, as

specifically indicated for illustrative purposes in FIG. 1,

the X

system can employ the VAX® architecture” Col. 5, ll. 59-

63. The RISC architectures is “embodied in equipment made by

Digital Equipment Corporation” Id. at ll. 66-68.

Following, compiling and linking, the X executable machine

code is translated “into the corresponding Y executable

application code

Appeal No. 1997-2212 Page 11
Application No. 08/233,387

designated by the reference numeral 22A.” Col. 6, ll. 21-23.

As explained regarding direct migration, the Y executable

machine code is architecture-dependent.

For the foregoing reasons, we are not persuaded that

teachings from the prior art would appear to have suggested

the claimed limitation of decompiling, i.e., translating

executable machine code into higher-level source code that is

architecture-independent. The examiner impermissibly relies

on the appellants’ teachings or suggestions; he has not

established a prima facie case of obviousness. Therefore, we

reverse the rejection of claims 1-9 and 11-19 under 35 U.S.C.

§ 103.

CONCLUSION

To summarize, the rejection of claims 1-9 and 11-19 under

35 U.S.C. § 103 is reversed.

REVERSED

Appeal No. 1997-2212 Page 12
Application No. 08/233,387

JAMES D. THOMAS)
Administrative Patent Judge)

)
)
)
) BOARD OF PATENT

JOSEPH F. RUGGIERO) APPEALS
Administrative Patent Judge) AND

) INTERFERENCES
)
)
)

LANCE LEONARD BARRY)
Administrative Patent Judge)

LLB/kis

Appeal No. 1997-2212 Page 13
Application No. 08/233,387

OBLON, SPIVAK, MCCLELLAND,
MAIER & NEUSTADT
1755 Jefferson Davis Highway
4th Floor
Arlington, VA 22202

Appeal No. 1997-2212 Page 14
Application No. 08/233,387

